A cura di @NedCuttle21(Ulm).
Secondo un team di ricercatori dell’Università di Princeton, la distribuzione su larga scala dei numeri primi celerebbe uno schema simile a quello riscontrabile, attraverso cristallografia a raggi x, nella struttura atomica di particolari materiali chiamati quasicristalli. La chiave per comprendere il parallelismo tra due mondi all’apparenza così distanti, sostiene il team, risiederebbe nel concetto matematico noto come “iperuniformità” – la cui definizione si deve allo stesso capo del team di Princeton autore dello studio, Salvatore Torquato. Ne parla un articolo pubblicato su IFLScience.
Beguilingly simple and yet painfully, frustratingly complex at the same time, there are few things in mathematics as fascinating as the primes: numbers that cannot be divided by any integers except themselves and one. And, as with so much in number theory, the scariest problem of all is one that sounds, on the face of it, almost childishly straightforward: what pattern – if any – do the prime numbers follow?
It’s not an easy question. Since Eratosthenes first invented his sieve back in the 3rd century BCE, some of the greatest mathematical minds have thrown up their hands and declared it unanswerable. The best we’ve got is the famous Riemann hypothesis, which says that the primes follow a pattern closely related to the Riemann zeta function. The hypothesis may well be true – many mathematicians, often a romantic bunch, feel it’s just too beautiful not to be true – but in the 160 years since Riemann first proposed it, nobody has yet been able to come up with a proof.
Un articolo pubblicato nel luglio del 2016 su Quanta Magazine cerca di far luce sul concetto di iperuniformità partendo dallo studio condotto dallo scienziato Joseph Corbo sulla retina dei polli.
Seven years ago, Joe Corbo stared into the eye of a chicken and saw something astonishing. The color-sensitive cone cells that carpeted the retina (detached from the fowl, and mounted under a microscope) appeared as polka dots of five different colors and sizes. But Corbo observed that, unlike the randomly dispersed cones in human eyes, or the neat rows of cones in the eyes of many fish, the chicken’s cones had a haphazard and yet remarkably uniform distribution. The dots’ locations followed no discernible rule, and yet dots never appeared too close together or too far apart. Each of the five interspersed sets of cones, and all of them together, exhibited this same arresting mix of randomness and regularity. Corbo, who runs a biology lab at Washington University in St. Louis, was hooked.
Immagine da Wikimedia.
Commenta qui sotto e segui le linee guida del sito.